Kalewa Section, Sample 27: Late/Upper Eocene, Myanmar

List of taxa
Where & when
Geology
Taphonomy & methods
Metadata & references
Taxonomic list
Chlorophyceae
Pediastrum cf. palaeogenites microspore
unclassified
Anthocerisporis sp. microspore Krutzsch 1963
Lycopodiopsida - Selaginellales - Selaginellaceae
? Selaginella sp. microspore Beauvois 1804
Selaginella sp. microspore Beauvois 1804
Pteridopsida
Deltoidospora sp. microspore Miner 1935
Polypodiopsida - Blechnaceae
Leptolepidites sp. microspore Couper 1953
Polypodiopsida - Schizaeales - Schizaeaceae
Cicatricososporites eocenicus microspore Jansonius and Hills 1976
Polypodiopsida - Polypodiaceae
Laevigatosporites sp. microspore Ibrahim 1933
Verrucatosporites sp. microspore Pflug and Thomson 1953
unclassified
Ranunculacidites operculatus microspore Jaramillo and Dilcher 2001
Pinopsida - Pinales - Pinaceae
Pinuspollenites sp. microspore Raatz 1938
Angiospermae - Magnoliales - Magnoliaceae
Magnoliaceae indet. microspore de Jussieu 1789
Angiospermae - Fagales - Fagaceae
Cupuliferoipollenites sp. microspore Potonié
Angiospermae - Fabales - Fabaceae
Margocolporites sp. microspore Ramanajuan 1966
Angiospermae - Malpighiales - Euphorbiaceae
Euphorbiaceae indet. microspore Jussieu 1789
Angiospermae - Sapindales - Sapindaceae
Striasyncolpites sp. microspore Mildenhall and Pocknall
Cupanieidites sp. microspore Cookson and Pike 1954
Angiospermae - Malvales - Malvaceae
Discoidites sp. microspore Muller
Angiospermae - Myrtales
Heterocolpites combretoides microspore
Myrtaceidites sp. microspore Cookson and Pike 1960
Angiospermae - Ericales - Ericaceae
Ericipites sp. microspore Wodehouse 1933
Angiospermae - Ericales - Sapotaceae
Sapotaceoidaepollenites sp. microspore Potonié et al. 1950
Angiospermae
Restioniidites ? punctulosus microspore
Angiospermae - Araceae
Proxapertites sp. microspore Van der Hammen 1956
Proxapertites operculatus microspore Van der Hammen 1956
Angiospermae - Arecaceae
Longapertites retipilatus microspore
Palmaepollenites kutchensis microspore Venkatachala and Kar 1969
Angiospermae - Liliaceae
Liliacidites sp. microspore Couper 1953
Angiospermae - Gentianales - Rubiaceae
Rubiaceae indet. microspore Jussieu 1789
see common names

Geography
Country:Myanmar State/province:Sagaing
Coordinates: 23.2° North, 94.3° East (view map)
Paleocoordinates:14.7° North, 94.2° East
Basis of coordinate:stated in text
Geographic resolution:small collection
Time
Period:Paleogene Epoch:Eocene
Stage:Priabonian 10 m.y. bin:Cenozoic 3
Key time interval:Late/Upper Eocene
Age range of interval:37.71000 - 33.90000 m.y. ago
Age estimate:38 to 37 Ma (U/Pb)
Stratigraphy
Formation:Yaw
Local section:Kalewa Local bed:265.6 m
Local order:bottom to top
Stratigraphic resolution:bed
Stratigraphy comments: "U–Pb dating of a tuff layer (Licht et al. 2019), magnetostratigraphy, U–Pb apatite dating and apatite fission track dating (Westerweel et al., 2020) provide an age of c. 38–37 Ma, which is also supported by the palynological evidence discussed below and in Huang et al. 2020, Huang et al. 2018." (Huang et al. 2023)
Lithology and environment
Primary lithology: lithified sandstone
Secondary lithology: mudstone
Environment:fluvial indet.
Taphonomy
Modes of preservation:body
Size of fossils:microfossils
Collection methods and comments
Collection methods:chemical
Reason for describing collection:paleoecologic analysis
Collection method comments: "Two palynological processing methods were performed to ensure maximum recovery. One set of samples was processed for quantitative analysis. The processing was as follows: 1.3 g of sample was boiled in 10% sodium pyrophosphate, and then treated with 10% HCl, and sieved with 5 μm and 212 μm meshes. The sample was then heated in acetolysis mixture to 100 °C. Bromoform-treatment was applied to separate any remaining inorganic fraction to produce residue. A second set of selected samples was processed mainly for microphotography. The processing method was as follows: 30 g of washed and dried sample was treated with 10% HCl and 40% HF. Then a heavy liquid separation was used to separate the organic and remaining inorganic fractions. All resulting residues were mounted on a slide in glycerin and sealed with paraffin for light microscope (LM) observation. Residues were further used for analysis with LM and scanning electron microscopy (SEM) at the Department of Palaeontology (DoP), University of Vienna, Austria. Details on the two methods were presented in Huang et al. (2020)." (Huang et al. 2023)
Metadata
Database number:227675
Authorizer:B. Allen Enterer:B. Allen
Created:2022-10-26 07:02:15 Last modified:2022-10-26 07:02:15
Access level:the public Released:2022-10-26 07:02:15
Creative Commons license:CC BY
Reference information

Primary reference:

82916. H. Huang, R. J. Morley, A. Licht, G. Dupont-Nivet, D. Pérez-Pinedo, J. Westerweel, Z. Win, D. Wa Aung, E. Budi Lelono, G. N. Aleksandrova, R. K. Saxena and C. Hoorn. 2023. A proto-monsoonal climate in the late Eocene of Southeast Asia: evidence from a sedimentary record in central Myanmar. Geoscience Frontiers 14(1):101457 [B. Allen/B. Allen]